Context-Based Distance Learning for Categorical Data Clustering
نویسندگان
چکیده
Clustering data described by categorical attributes is a challenging task in data mining applications. Unlike numerical attributes, it is difficult to define a distance between pairs of values of the same categorical attribute, since they are not ordered. In this paper, we propose a method to learn a context-based distance for categorical attributes. The key intuition of this work is that the distance between two values of a categorical attribute Ai can be determined by the way in which the values of the other attributes Aj are distributed in the dataset objects: if they are similarly distributed in the groups of objects in correspondence of the distinct values of Ai a low value of distance is obtained. We propose also a solution to the critical point of the choice of the attributes Aj . We validate our approach on various real world and synthetic datasets, by embedding our distance learning method in both a partitional and a hierarchical clustering algorithm. Experimental results show that our method is competitive w.r.t. categorical data clustering approaches in the state of the art.
منابع مشابه
Distance based Clustering for Categorical Data
Learning distances from categorical attributes is a very useful data mining task that allows to perform distance-based techniques, such as clustering and classification by similarity. In this article we propose a new context-based similarity measure that learns distances between the values of a categorical attribute (DILCA DIstance Learning of Categorical Attributes). We couple our similarity m...
متن کاملConDist: A Context-Driven Categorical Distance Measure
A distance measure between objects is a key requirement for many data mining tasks like clustering, classification or outlier detection. However, for objects characterized by categorical attributes, defining meaningful distance measures is a challenging task since the values within such attributes have no inherent order, especially without additional domain knowledge. In this paper, we propose ...
متن کاملA Simple Yet Fast Clustering Approach for Categorical Data
Categorical data has always posed a challenge in data analysis through clustering. With the increasing awareness about Big data analysis, the need for better clustering methods for categorical data and mixed data has arisen. The prevailing clustering algorithms are not suitable for clustering categorical data majorly because the distance functions used for continuous data are not applicable for...
متن کاملخوشهبندی خودکار دادههای مختلط با استفاده از الگوریتم ژنتیک
In the real world clustering problems, it is often encountered to perform cluster analysis on data sets with mixed numeric and categorical values. However, most existing clustering algorithms are only efficient for the numeric data rather than the mixed data set. In addition, traditional methods, for example, the K-means algorithm, usually ask the user to provide the number of clusters. In this...
متن کاملClustering Mixed Data via Diffusion Maps
Data clustering is a common technique for statistical data analysis, which is used in many fields, including machine learning, data mining, customer segmentation, trend analysis, pattern recognition and image analysis. Although many clustering algorithms have been proposed most of them deal with clustering of numerical data. Finding the similarity between numeric objects usually relies on a com...
متن کامل